A machine learning approach to drug repositioning based on drug expression profiles: Applications in psychiatry

نویسندگان

  • Kai Zhao
  • Hon-Cheong So
چکیده

Development of new medications is a very lengthy and costly process. Finding novel indications for existing drugs, or drug repositioning, can serve as a useful strategy to shorten the development cycle. In this study, we present an approach to drug discovery or repositioning by predicting indication for a particular disease based on expression profiles of drugs, with a focus on applications in psychiatry. Drugs that are not originally indicated for the disease but with high predicted probabilities serve as good candidates for repurposing. This framework is widely applicable to any chemicals or drugs with expression profiles measured, even if the drug targets are unknown. It is also highly flexible as virtually any supervised learning algorithms can be used. We applied this approach to identify repositioning opportunities for schizophrenia as well as depression and anxiety disorders. We applied various state-of-the-art machine learning (ML) approaches for prediction, including deep neural networks, support vector machines (SVM), elastic net, random forest and gradient boosted machines. The performance of the five approaches did not differ substantially, with SVM slightly outperformed the others. However, methods with lower predictive accuracy can still reveal literature-supported candidates that are of different mechanisms of actions. As a further validation, we showed that the repositioning hits are enriched for psychiatric medications considered in clinical trials. Notably, many top repositioning hits are supported by previous preclinical or clinical studies. Finally, we propose that ML approaches may provide a new avenue to explore drug mechanisms via examining the variable importance of gene features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug repositioning: a machine-learning approach through data integration

: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approac...

متن کامل

O-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches

The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...

متن کامل

Pluronic as nano-carier for drug delivery systems

A common approach for building a drug delivery system is to incorporate the drug within the nanocarrier that results in increased solubility, metabolic stability, and improved circulation time. However, recent developments indicate that selection of polymer nanomaterials can implement more than only inert carrier functions by being biological response modifiers. One representative of such mater...

متن کامل

A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network

Drug repositioning offers new clinical indications for old drugs. Recently, many computational approaches have been developed to repurpose marketed drugs in human diseases by mining various of biological data including disease expression profiles, pathways, drug phenotype expression profiles, and chemical structure data. However, despite encouraging results, a comprehensive and efficient comput...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017